

Blood 142 (2023) 93-94

The 65th ASH Annual Meeting Abstracts

ORAL ABSTRACTS

652.MULTIPLE MYELOMA: CLINICAL AND EPIDEMIOLOGICAL

Multimodal Single-Cell Transcriptomic and Proteomic Correlatives of Patients Outcomes Following Anti-BCMA Cellular Therapy with Ciltacabtagene Autoleucel (Cilta-cel) in Relapsed Multiple Myeloma

Junia Vieira dos Santos, MD PhD¹, David Melnekoff, MS¹, Adolfo Aleman, MPA², Sherry Bhalla, PhD³, Tarek H. Mouhieddine, MD², Oliver Van Oekelen, MDPhD², Sridevi Rajeeve, MD⁴, Bhaskar Upadhyaya, PhD⁵, Yoqita Ghodke-Puranik, PhD¹, Violetta Leshchenko, PhD⁶, Adeeb Rahman, PhD⁷, Shaked Afik, PhD⁷, Hadas Lewinsky, PhD⁷, Santiago Thibaud, MD⁵, Hearn Jay Cho, MD⁸, Joshua Richter, MD², Cesar Rodriguez, MD⁵, Larysa Sanchez, MD², Adriana C Rossi, MD MSc⁵, Shambavi Richard, MD⁵, Ajai Chari, MD⁹, Sundar Jagannath, MD¹⁰, Samir Parekh, MD⁵, Alessandro Lagana, PhD⁶

- ¹Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- ²Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- ³Mount Sinai Hospital, New York, NY
- ⁴Mount Sinai, New York, NY
- ⁵Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
- ⁶Icahn School of Medicine At Mount Sinai, New York, NY
- ⁷ ImmunAl, New York, NY
- ⁸Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Tisch Cancer Institute, New York, NY
- 9 at the time that the work was performed, Mount Sinai School of Medicine, New York, NY
- ¹⁰Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York

Introduction

Multimodal single cell technologies allow us to dissect the mechanisms of therapeutic resistance by integrating transcriptomics and proteomics through the combination of antibody labeling and next-generation sequencing. Using CITE-seq, mass cytometry (CyTOF) and quantitative multiplexed proteomics (Olink), we sought to understand the determinants of chimeric antigen receptor (CAR) T cell response and the overall survival of patients with relapsed or refractory multiple myeloma (RRMM) receiving ciltacabtagene autoleucel (Cilta-Cel) cellular therapy.

Methods

Twenty five patients received Cilta-Cel and had bone marrow (BM) and peripheral blood (PB) samples collected at baseline and after CAR T infusion. We isolated 262,520 BM cells and 241,657 PB cells, which were later sequenced using CITE-seq. Additionally, we submitted PB samples for CyTOF analysis and acquired 10,162,426 cells used for downstream analysis. We analyzed 92 cytokines using Olink immuno-oncology panel in PB samples. Downstream analysis was performed using the R packages Seurat, CATALYST, FlowSOM and Olink Analyze.

Results

Our cohort had a median progression-free survival (PFS) of 732 days. To focus our correlative analyses on patients experiencing early relapse, the initial cohort was divided into 2 groups: PFS <18 months (n = 10) and PFS >18 months (n = 15). CAR-T cell expansion was observed in week 2 post-infusion and continued up to week 4. The percentage of CD4 and CD8 CAR-T cells significantly increased between weeks 1-3 and weeks 4-6 weeks (p<0.001) and significantly decreased after week seven (p<0.05). We detected novel and significant differences among four cell populations associated with PFS longer than 18 months. These patients had a higher percentage of activated CD4 Central Memory (CM) and CD4 cytotoxic cells (p<0.05) relative to the total percentage of CAR-T cells in weeks 4-6, suggesting a key role for CD4 cells in cross priming or direct cytotoxicity in this context. In patients with a PFS longer than 18 months, the CD8 CM CART cell population had a significantly higher percentage in weeks 1-3 and 4-6 (p<0.05) when compared to their counterparts, suggesting that these were the cardinal effector population in these patients.

ORAL ABSTRACTS Session 652

Myeloid-derived suppressor cells (MDSCs) have been shown to be a central component of the tumor microenvironment in myeloma, with subsets being capable to mount potent suppressive activity at the tumor site. In the BM CITE-seq myeloid compartment, MDSCs were significantly increased in month 1 (p<0.05) in patients with a shorter PFS. Our PB CyTOF data confirmed this finding as the percentage of MDSCs was significantly higher in weeks 1-3 (p<0.05) in the shorter PFS group when compared to their counterparts.

Using a mixed linear regression model on Olink data, we detected 26 cytokines significantly different (p<0.05) between the shorter and longer PFS groups. A pseudobulk analysis of the BM CITE-seq samples for differentially expressed genes encoding the 26 cytokines revealed 22 genes differentially expressed (p<0.05) between patients with a PFS shorter than 18 months and patients with a PFS longer than 18 months in CAR-T, T-cell, NK cell and myeloid cell populations. In the shorter PFS group, VEGFA was significantly higher in CD8 TEMRA CAR-T cells when compared to their counterparts. In the longer PFS group, we observed significantly higher levels of genes involved in T cell activation, such as CD27 and CD28, and pro-inflammatory cytokines such as TNF and IL-15 in the T cell and Myeloid cell compartments. This pattern suggests that higher production of cytotoxic and pro-inflammatory cytokines, combined with enhanced T cell activation, plays an important role in prolonging the response to CAR-T therapy.

Conclusions

Single cell immune profiling and transcriptomic sequencing identified subpopulations of CD4 and CD8 cells which in concert may influence long term CAR-T outcomes. Our findings demonstrate an early expansion of CART, with very few CART cells surviving after 3 months, suggesting that the efficacy of this therapy is related to early dynamics of these populations. We also provide additional evidence associating immunosuppressive MDSC populations in BM and PB patients with a shorter PFS. Ongoing studies will further analyze the role of the immune microenvironment and clonal T cell dynamics in relation to patient outcomes.

Disclosures Mouhieddine: Legend Biotech: Consultancy. Rahman: ImmunAI: Current Employment. Afik: ImmunAI: Current Employment. Lewinsky: ImmunAI: Current Employment. Cho: Takeda, Inc.: Research Funding; Bristol Myers-Squibb: Research Funding. Richter: Bristol-Meyers-Squibb: Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Consultancy; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy; Sanofi: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees. Rodriguez: Janssen, Takeda, Bristol Myers Squibb, Amgen, Karyopharm Therapeutics: Membership on an entity's Board of Directors or advisory committees. Sanchez: Janssen Pharmaceuticals: Consultancy, Honoraria. Rossi: JNJ: Membership on an entity's Board of Directors or advisory committees; Adaptive: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees. Richard: Heidelberg Pharma: Research Funding; Bristol Myers Squibb: Honoraria; C4 Therapeutics: Research Funding; Janssen: Honoraria. Chari: Secura Bio: Consultancy, Other: Advisory Board; Karyopharm: Other: Advisory Board; AbbVie: Other: Advisory Board; BMS: Consultancy, Other: Advisory Board, Research Funding; Antengene: Consultancy; Shattuck Labs: Other: Advisory Board; Amgen: Consultancy, Other: Advisory Board, Research Funding; Sanofi: Other: Advisory Board; Glaxo Smith Kline: Other: Advisory Board; Millenium/Takeda: Consultancy, Research Funding; Seattle Genetics: Other: Advisory Board, Research Funding; Genentech: Other: Advisory Board; Janssen: Consultancy, Other: Advisory Board, Research Funding. Jagannath: Regeneron: Consultancy; Takeda: Consultancy; Caribou Biosciences: Consultancy; Sanofi: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria; DMC: Membership on an entity's Board of Directors or advisory committees; Genmab: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Consultancy; IMS: Membership on an entity's Board of Directors or advisory committees, Other: Support for attending meetings and/or travel; ASH: Membership on an entity's Board of Directors or advisory committees; SOHO: Membership on an entity's Board of Directors or advisory committees; Mount Sinai Hospital: Current Employment. Parekh: Caribou Biosciences: Research Funding; Amgen: Research Funding; Celgene/BMS Corporation: Research Funding; Karyopharm Therapeutics: Research Funding; Grail, LLC: Membership on an entity's Board of Directors or advisory committees.

https://doi.org/10.1182/blood-2023-186395